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Abstract  

An axiomatisation of classical thermodynamics previously proposed for a somewhat 
restricted class of systems whose state spaces are differentiable manifolds is extended to 
systems whose state spaces are arbitrary connected separable topological spaces. It turns 
out that such systems need not obey Carath6odory's principle, although they do obey a 
form of Kelvin's principle. 

1. Introduction 

In three earlier papers (Boyling, 1972, 1973a and 1973b), hereafter referred 
to as I, II and III respectively, an axiomatic formulation of  classical thermo- 
dynamics was presented, in which at tention was confined essentially to systems 
whose state spaces are differentiable manifolds. 

Not all systems are of  this type. For  example, for a system made up of  two 
identical subsystems in thermal contact,  each subsystem being a cylinder fi t ted 
with a smooth piston and filled with a single chemically stable substance, the 
state space is not  a manifold. In the neighbourhood of  a state in which the 
substance in each cylinder is at its triple point,  the state space is four-dimen- 
sional; elsewhere it is three-dimensional. Nor is it a manifold with boundary,  
since the four-dimensional part is not  dense 

We therefore wish to extend our previous results to systems whose state 
spaces are arbitrary connected separable topological spaces. It will still be 
necessary to assume the existence of  thermometers  (I), whose state spaces are 
differentiable manifolds. But, provided there are enough of  these to cover all 
possible temperatures,  it is possible to extend to non-differentiable systems all 
the results proved in I, II and III. 

The basic postulates for non-differentiable systems are listed and discussed 
in Section 2. Entropy and absolute temperature are constructed for such 
systems in Section 3. In Section 4, the entropy so constructed is shown to be 
additive. In Section 5, it  is shown that non-differentiable systems (with or 
without  internal adiabatic parti t ions) obey the principle of  increase of  entropy 
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and its converse (III). A notion of quasi-static transition for such systems is 
introduced in Section 6, in such a way as to give a meaning to the differential 
relation ~rQ = TdS, Clausius' inequality and Kelvin's principle, it turns out 
from the postulates that, although they obey Kelvin's principle, non-differenti- 
able systems do not in general obey Carath6odory's principle (cf. Landsberg, 
1964; Dunning-Davies, 1965). 

2. Basic Assumptions 

We shall assume postulates I-V of I and assumptions (i) and (ii) of II, in so 
far as they concern general thermodynamic systems and thermometers. In place 
of the simple systems (Carath6odory, 1909) of I, we shall consider the wider 
class ofgeneralised simple systems M with the following properties (where, as 
in I, no distinction is made between a system and the set of all its states): 

(1) Given x andy inM, then either x ~<y o ry  ~<x (or both), where ~< is 
the relation of (adiabatic) accessibility. 

(2) Given x in M, there exist y and z in M such that z < x < y  (where 
x < y  meansy ~ x ) .  

(3) M is a connected separable topological space. 
(4) <~ is a closed relation on M, i.e. its graph G is a closed subset of the 

topological product M x M. 
(5) The mutual accessibility classes of M (i.e. equivalence classes of the 

equivalence relation =- on M defined by x =-y if and only i fx  ~<y and 
y ~<x) ~re connected subsets of M. 

(6) The adiabatic work function (I) is a continuous real-valued function on 
the subspace G o f M  x M. 

(7) The equivalence relation ~ (equality of temperature) on states of 
simple systems may be extended to states of all generalised simple 
systems. Its equivalence classes will again be known as isothermals and 
those of its restriction to the states of a particular generalised simple 
system as the isotherms of that system. 

(8) Every isothermal contains a state of some thermometer. 
(9) I f M  is a generalised simple system, N a thermometer, and V any open 

set in N, then 

{x E M ; x  ~ y  for somey in V} 

is a (possibly empty) open subset of M. 
(10) Let M1, Ma, • . . ,  Mn be generalised simple systems, M their product. If  

the subspace 

{(x 1 . . . . .  Xn) E M; x 1 ~ x2 . . . . .  xn} 

of M is non-empty, when we say the M i are (mutually for n > 2) com- 
patible, then each connected component of this subspace represents a 
generalised simple system, called a composite of the Mi, for which the 
relation ~< and the adiabatic work function are the appropriate restric- 
tions of those of M. 
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(11) l fM is a generalised simple system, N a thermometer compatible with 
M, and L C M x N a mutual accessibility class of a composite of M and 
N, then the image prl(L) of L under the first projection prl of the topo- 
logical product M x N is an open subset of M. 

Comparison of the above assumptions with the postulates of I shows that 
it is consistent to assume that every simple system is a generalised simple 
system. Assumptions t -6  constitute the analogue for generalised simple sys- 
tems of postulate II of I for simple systems. Assumptions 7 and 8 extend the 
zeroth law (postulate IV of I) to generalised simple systems. The first law has 
already been assumed, in the shape of postulate I of I, which applies to arbitrary 
thermodynamic systems. There is no need to extend the second law to general- 
ised simple systems or their products. Indeed, Carath~odory's principle need 
not hold for such systems (cf. Section 6). For our purposes it will be sufficient 
to assume the second law (postulate III or III' of I) for thermometers alone. 
Assumption (i) of II (first proposed by Cooper, 1967) then ensures (cf. corollary 
to temma 1 of II) that it holds also for all products of thermometers. The 
auxiliary assumptions 9, 10 and 11 above correspond roughly to postulate V 
of I for simple systems, though 10 also embraces an extension of assumption 
(ii) of II. A composite of generalised simple systems M/ is to be viewed physic- 
ally as consisting of the Mi in mutual thermal contact. Comparing 10 with 
postulate V of I, we see that, i fM and N are compatible thermometers, then 
they have only one composite, itself a thermometer, called their sum M + N.  
An inductive argument shows that a family of n mutually compatible thermo- 
meters M b .  •. ,  Mn has just one composite 23n=l Mi, which is itself a thermo- 
meter. From 10, we also deduce the following lemma: 

Lemrna. Suppose M 1 , . . . ,  M n are generalised simple systems, Ic~ for o~ = 1, 
. . . .  m disjoint non-empty subsets of the set I = { 1 , . . . ,  n} of the first n 
positive integers, such that 

m 
U I ~ = I  

Then a generalised simple system C is a composite of the M i (i = 1 . . . . .  n) if 
and only if it is a composite of systems C a for c~ = 1 . . . . .  m, where Cc~ is a 
composite of the M i with i in Ia (or just M i itself if Ic~ happens to consist of 
the single element i). 

Proof. By abuse of language, we write 
n n? 

M =  ITI M~= I-I M~ 
i=1  &=l  

where 

Mo~= I ~  Mi 
i E Ic~ 

and denote by prc~ the natural projection of M onto Ms. We also write 

N =  ((xl . . . .  , Xn) E M ; x l  . . . . .  Xn) 

N,~ = ((xi)ie¢,~ ~ M ~ ; x i  ~ x j  for i, j ~ I,~) 
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Suppose first that C is a composite of  the Mi, i.e. a component of  N. Then 
pra(C3 is a connected subset o f N  a. Let Ca be the component of  Na containing 
pra(C ). Then 

As C is a maximal connected subset of  N, it is also a maximal connected subset 
of  (II~Ca) N N, i.e. C is a composite of  the Cco 

Conversely, suppose there exists for each a a composite Ca of  the Mi with i 
in Ie, such that C is a composite of  the Ca. Then C is a component of  
(I~Cc~) N N. Let C '  be any connected subset o f  N containing C. Then pra(C') 
is a connected subset Of Na intersecting Ca- Since Cc~ is a maximal connected 
subset Of Na,  it follows that pr~(C') C Cc~. Hence 

As C is a maximal connected subset o f  (II~C~) n N, it follows that C = C'. Thus 
C is a maximal connected subset of  N, i.e. C is a composite of  the Mi. 

3. Absolute Temperature and Entropy 

It was shown in I that postulate I implies the existence for every thermo- 
dynamic system M of  a real-valued function U (determined to within an addi- 
tive constant) called the internal energy, such that 

W(x, y) = U(x) -~ U(y) for (x, y) E G 

where W is the adiabatic work function. If  Ui is the internal energy of  Mi for 
i = 1 . . . . .  n, then the internal energy U o f M  = 1Tli=lMi is given (to within an 
additive constant) by 

n 

v(x~ . . . .  , xn)  = E ui(xi)  
i = 1  

I f M  is a thermometer, then U is a C ~ function with no critical points. Assump- 
tion 6 implies that the internal energy of  a generalised simple system is con- 
tinuous. 

The construction of  the absolute temperature scale in I enables us to associ- 
ate with each thermometer M a positive-valued C ~ function TM on M with no 
critical points, in such a way that, i fx  a n d y  are states of  thermometers M and 
N, then x "~ y if and only if TM(x) = TN(Y). This temperature scale (unique to 
within a positive multiplicative constant) has the (defining) property that the 
heat form of each thermometer M is of  the form ~ u  = TM dSM, where SM is a 
C ~ function on M with no critical points (determined to within an additive 
constant) called the entropy. The function SM is an empirical entropy, i.e. it 
satisfies the condition that SM(X ) <~ SM(X') if and only i fx  ~< x' .  It is also addi- 
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tire, in the sense that the entropy S of the sum of the mutually compatible 
thermometers M1, • •., Mn is given by 

tl 

S(xl . . . . .  Xn) = ~ Si(xi) + constant (3.1) 
i = 1  

where Si is the entropy o f M  l. 
The results of II and III show that, if the entropy of a product of thermo- 

meters M = IIn=l M i is defined by 

n 

SM(Xl . . . .  ,Xn) = ~ Si(xi) (3.2) 
i=l 

where Si is the entropy of Mi, then SM is an empirical entropy forM. 
Assumptions 7 and 8 enable us to extend the absolute temperature scale to 

generalised simple systems in an obvious way, by defining the absolute tem- 
perature TM(X) of a state x of a generalised simple system M to be TN(Y) for 
any state y of any thermometer N such that x ~ y. Assumption 9 ensures that 
the positive-valued function TM on M so defined is continuous. 

The construction of the entropy of a generalised simple system is not 
quite so easy. We proceed by first using assumption 11 to construct local en- 
tropies for M, and then piecing these together using the known existence (im- 
plied by asstunptions t-5;  cf. Buchdahl & Greve, 1962; Cooper, 1967; Boyling, 
1968) of a continuous empirical entropy a for M. 

Let M be a generalised simple system, N a thermometer compatible with 
M, L C M x N a mutual accessibility class of a composite of M and N. By 11, 
prx(L) is an open subset of M, and, by 8, the sets prl(L) for varying (N and) L 
constitute an open covering of M. We define a local entropy SL for M on prl(L) 
by 

S t ( x )  = -SuO ' )  (3.3) 

tbr any y in N such that (x, y )  E L, where SN is the (already defined) entropy 
of the thermometer N. This is a meaningful definition, i.e. the right-hand side 
of (3.3) is independent of the choice ofy .  For suppose (x, y ' )  E L. Then, as L 
is a mutual accessibility class of a composite of M and N, we have (x, y)  =- (x, y ' )  
tbr that composite, and hence, by 10, also for the product system M x N. It 
follows by assumption (i) of II tha ty  = y '  for N, whence S@~y) = SJ~v'), since 
SN is an empirical entropy for N. 

We now show that SL is a local empirical entropy (Boyling, 1968) f o rm  on 
prt(L). Let x and x'  be any two points of prl(L). Then 

SL(x') - SL(x) = SN(y) -- SN(V') 

where (x, y)  and (x', y ' )  both belong to L, so that 

(x, y )  -- (x', y ' )  f o r M x N  
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I fx  ~<X', then 

(x', y ' )  < (x, y )  < (x', y )  

and soy '  ~<y by assumption (i) of II, whence 

S~v(y') < s~0,) 

and 

SL(x) <SL(x') 
Conversely, if SL(x) <~ Sz(x ' ) ,  then SN(,v') <~ SN(,v), y '  ~<y, and so 

(x ,y )  <. (x ' ,y ' )  <~(x',y) 

whence x ~<x' by assumption (i) of II. 
Next we observe that SL must be continuous. For its range 

SL o ph(L) = --SN o pr2(L) 

is an interval I of the real line, since L is connected and SN (and pr2) continu- 
ous. Since the preorder relation ~< on M is closed, the topology of the quotient 
space of ph(L) by the equivalence relation - is stronger than its order topology 
under the (total) ordering induced by ~<. Now the function Sz, being a local 
empirical entropy, passes to the quotient to define an order isomorphism SL 
of the above quotient space onto I. But an order isomorphism of totally ordered 
sets becomes a homeomorphism if each set carries its order topology (see e.g. 
Kowalsky, 1965, 16.2, p. 117). It follows that ~L is continuous, and therefore 
so is S L . 

Now there exists (Boyling, 1968) a continuous empirical entropy o on M, 
and, since col and the restriction OL of o to pr~ (L) are both continuous local 
empirical entropies on pr~(L), it follows that S L =fL o ~TL, where fL is a strictly 
increasing continuous real-valued function on the interval IL = cr o prl (L) of 
the real line. 

The functions fL for varying L have the property that, if any two of them 
have a common domain of definition, then they differ by a constant (at most) 
on that common domain. For suppose 

Iz, NIL,¢ ¢, tl, t 2 E I L N I r  ' 

Then, i fN  and N'  are the thermometers corresponding to L and L', there exist 
states (x t, Y 1) and (x2, Y2) in L C M x N and states (x'l, Y'I) and (x~, y ; )  in 

L'  C M x N '  such that 

0(Xl) = 0"(X'l) : tl, O(X2) = O ( X ; )  = t 2 

_ _  t _ _  t ! ! 

Clearly x l = x l and x z = x ~ for M, (x b y O =- (x 2, y 2 ) for M x N, and (x a, y l) =- 
(x~, y~) for M x N'. Therefore, for M x N x N', we have 

(X 1, Yl, Y2) ~ (X2, Y2, Yi) ~ (X2, Y2, Y;) ~ (Xl, Y2, Yl) ~ (X1, Y2, Yl) 
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whence 

¢ _ , N '  (y,, y2) = (y2 ,y l )  f o r N x  

by assumption (i) of  II. Since N and N '  are thermometers,  the entropy of  
N x N '  (defined by 3.2) is an empirical entropy, and so 

+ SNO',) SN'(V~) =SNfy~) +SN'(y;) 
whence 

i.e. 

& ' ( x ' l )  - & ( x l )  = & ' ( x i )  - & ( x 2 )  

385 

[ c ( t , )  - [ / ; ( t , )  = f / ; , ( t = )  - fL(t,) 

Next we prove that there exists a strictly increasing continuous function f 
on the open interval o(M) which differs by a constant from each fL on its 
domain of  definition. This we do by applying Zorn's  lemma to the set o ~ of  
all (strictly increasing) continuous functions f on subintervals I of  o(M) with 
the property that  f and fL differ by a constant on I NIL  for every L. Clearly o ~ 
is non-empty,  since fL E o~ r for each L. If  ~"  is partially ordered by f<~f' 
if and only i f f '  is an extension o f f ,  then it is clear that o~ satisfies all the con- 
ditions of  Zorn's  lemma. It therefore contains at least one maximal element f .  
The domain I of  this f u n c t i o n f m u s t  be the whole of  o(M). For suppose this is 
not so. Then at least one end point of  I belongs to a(M). Suppose to = sup I @ 
o(M). Then there exists at least one L such that o takes the value to and values 
greater than to on prl(L). For otherwise each point  x of  the mutual accessibility 
class a-1(to) would have an open neighbourhood of  the form prl(L) on which 
o never exceeds to. The non-empty set 

{x C M; o(x) ~< to} 

would thus be both open and closed in the connected space M, and therefore 
equal to the whole of  M, contradicting assumption 2. Thus there exists an L 
such that to EIL, sup IL > to. Similarly, there exists an L' such that to EIL', 
inf'//;, < to. Since f and fL" differ by a constant on I/;, N / ,  it follows that f( t )  
tends to a finite limit l as t tends to from below, with l = f ( to )  if to E l .  Defining 
the function f *  on the interval I*  = I O I/; by 

If(t) for t E 1  
f*(t) 

[ fL( t )  - fL(to) + l for t E l / ;  

we see t h a t  

f* E ~ ,  f <. f*, f q: f'* 

contradicting the maximatity o f f .  Similarly, the assumption that i n f I  E 0(34) 
also leads to a contradiction. We conclude that I = 0(34). The maximal function 
fc lear ly  has all the required properties, and these determine it to within an 
arbitrary additive constant. 

27  
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We now define (also to within an additive constant) the entropy of the 
generalised simple system M to be the function SM = f o  o. Clearly SM differs 
by a constant from each local entropy SL on its domain of definition prl(L). 
Since f i s  a strictly increasing continuous function and o a continuous empirical 
entropy, it follows that SM is a continuous empirical entropy. I fM happens to 
be a thermometer, then this newly defined entropy coincides (to within an 
additive constant) with the entropy already defined on M, as follows at once 
from the additivity property (3.1) of entropy for thermometers. 

4. The Addit ivi ty o f  Entropy 

This additivity property will now be extended to generalised simple systems. 
To get a concise statement of it, we first define (to within an additive constant) 
by analogy with (3.2) the entropy of a product M = I1}*= 1Mi of generalised 
simple systems Mi by 

n 

S M ( X  1 . . . . .  Xn) = ~ S i ( x i )  ( 4 . 1 )  
i=1 

where Si is the entropy o f M  i (as constructed in Section 3). Additivity of 
entropy for generalised simple systems then states that, if the generalised 
simple system C is a composite of the generalised simple systems Mi, then the 
entropy S c  of C differs by a constant from the restriction Sb to C of the en- 
tropy SM of the product system M. 

Since C is a connected subspace of M, it will be sufficient to prove that the 
function S c  - Sb is locally constant. Let x = (xl . . . . .  xn) be any point of C, 
L i a mutual accessibility class of a composite of  Mi with a thermometer Ni, 
such that (xi, Yi) E L i for some Yi in Ni. We prove that S c - Sb is constant on 
the open neighbourhood 

n 

V = C O 1~ prl(Li) 
i=1 

of x in C. 
Let x '  = (Xl . . . .  • Xn) and x" = ( x ; , . .  ., Xn)" be any two points of V. Choose 

I It I I tt l? 
Yi andyi i nNi  such that (x i ,Y i )  and (xi , Y i )  are both i n L  i. Then 

S~(x i")  - si(x~)' = s~(v~)A ' - ~ ( v ~ ' )  

where Si and Si are the entropies of  Mi and Ni respectively. Summing on i gives 

SM(X") - SM(X') = SN(y')  -- SN(Y") (4.2) 

where N is the sum of the (clearly mutually compatible) thermometers N1 . . . .  , 
Nn, and y '  and y"  are the states of N in which Ni is in the state y} and Yl respec- 

t I __  t t  l! 
tively (i = 1 , . . . ,  n). Now (xi, Yi) = (X i , Y i )  for some composite o fMi  andNi, 
and therefore also (by 10) fo rM/x  N/. Hence 

n n 

( x ' , y ' ) - ( x " , y " )  for H M~× l~Ni 
i=1 i = l  
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and therefore also for some composite of  the M i and the Ni, which must (by 
the lemma of  Section 2) be a composite of  some composite of  the M i with 
some composite of  the N i. Since x', x" @ C and N is the only composite of  the 
Ni, it follows that (x' ,  y ' )  = (x", y")  for some composite of  C and N, whence 

Sc(x") - Sc(x') = SN(y') - SN(Y") (4.3) 

by construction of So. Comparing (4.2) and (4.3), we see that  

S c ( x " ) -  SM(X") = S c ( x ' )  -- SM(X')  

i.e. 

Sc(x" )  - Sb(x")  = S c ( x ' )  - s b  (x ' )  

i.e. S c - Sb is constant on V, as we sought to prove. 

5. The Principle o f  Increase o f  Entropy 

The principle of  increase of  entropy and its converse are satisfied by gener- 
alised simple systems by construction, since the entropy of  Section 3 was seen 
to be an empirical entropy. We shall now show that  the same is true ofgeneral- 
ised compound systems, i.e. products of  generalised simple systems, in the 
sense that the entropy defined by (4.1) for such a system is an empirical 
entropy. 

Suppose M = IIn=l Mi, where the Mi are generalised simple systems, and let 
x = (xl . . . .  • xn) a n d x '  = (Xl' . . . . .  x~) be any two states of  M. We must show 

that x ~< x '  if and only if SM(X) <, SM(X'). 
Let Y/" be the open covering of  M by sets of  the form Ilr]/=l prl(Li), where 

Li is a mutual accessibility class of  a composite of Mi with some thermometer 
Ni. Then, since M is connected, there exists a finite sequence Vo, V1 . . . . .  Vm 
of sets of  Y: such that: 

x E Vo, x' E Vm 

Vk_lC~Vk~O f o r k =  1 . . . . .  m 

Suppose Vk = IIn=l Vki, where Vm = prl(Lki) for some mutual accessibility 
class Lgi of  a composite of Mi with a thermometer  Nki, and choose 

~k = (~kl, • •., ~kn) E Vk-1 n Vk for k = 1 . . . . .  m 

Define go = x ,  ~m+l =x ' .  Then, for i = t , . . . ,  n, k = 0 , . . . ,  m, there exist yk/ 
and Y'~i in Nki such that (~ki, Ym) and (~x+1,i, Yk/) both belong to Lki. Let Si 
be the entropy ofMi, Sm that of  Nm. By construction of Si, w e  have 

& (  ~k + m,i) - & ( ~ i )  = Ski(Y ki) -- Ski(V'xi) 

Summing on k and i gives 

SM(x') - SM(X) = Su(V) --SU(V') (5.1) 
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N= H Uki 
M 

y = (vki), y ' - -  ~y~;) 

Also (~ki, Yki) = (~x+t,i, Yki) for the system Mi x Nki for each i and k. Therefore, 
for the system Mix l-[k N k i  , w e  have (xi ,  Yo i ,  Y l i  . . . . .  Y m i )  -= (~l i ,  Jo i ,  Y l i  . . . .  , 

_ t t _ ~, t t 

Y m i )  =- - = (~mi,  YOi . . . . .  Ymi ) ,  t h a t  . . . . .  , Ym - 1,i, Y m i )  -"= ( X i ,  Y oi, SO 
(x, y ) =- (x', y ' ) t b rMx  N (5.2) 

Suppose now that x <~ x' for M. Then (5.2) gives 

( x ' , y ' ) < ~ ( x , y ) < . ( x ' , y )  f o r M x N  

whence y '  ~<y for N, by assumption (i) of II. But N is a product of thermo- 
meters, and therefore its entropy, defined by (3.2), is an empirical entropy (cf. 
II and III). Hence SN(V') ~< SN(y), and so SM(X) <SM(X') ,  by (5.1). 

Conversely, suppose that SM(X) <- SM(X'). Then SN(V') ~< SN(y) and so 
y '  ~<y. Therefore, by (5.2), 

(x, y ) <~ (x', y ' )  <~ (x', y ) 

whence x ~<x' by assumption (i) of II. 

6. Quasi-Static Transitions 

We wish to investigate the possibility of extending to generalised simple 
systems the result OM = TM dSM proved for simple systems in I. This relation 
is meaningless as it stands unless M is a differentiable manifold. To get a result 
which can be extended to generalised simple systems, we apply both sides of 
the equation to the unit tangent vector ~ of a C ~ curve 3  ̀representing a quasi- 
static transition of the simple system M. This gives 

o r  

~M(')') = TM dSM('CD 

dO=( ~_~.~,t, = T M  o 7(0  d@_ {SM o 3`(0} (6.1) 
dt dt 

where Q~ (only defined to within an additive constant) has the property that 
Q.y(t2) - Q.y(tl) is the amount of heat absorbed by the system in the 'time' 
interval tl < t < t2. 

In order for this to make sense for a quasi-static transition of a generalised 
simple system M, represented by a continuous map 3  ̀of an open interval I into 
M, it is clearly necessary to impose some condition on 3  ̀to ensure that the 
continuous function SM o 3' is differentiable. We therefore admit as allowable 
quasi-static transitions of a generalised simple system only those 3' which satisfy 
the conditions of the following definition: 
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Definition. A continuous map 3' o f  an open interval I into M is a quasi-static 
transition of the generalised simple system M if and only i f I  can be covered by 
open subintervals J such that, for each J, there is a thermometer  N compatible 
with M and a continuous map P:  J - +  M x N into a single mutual accessibility 
class of  a composite of  M and N, such that prl © I" is the restriction of  3' to J 
and pr2 © P = 3" : J -+ N is of  class C 1. 

Clearly, i f M  is a thermometer ,  then any C ~ curve is a quasi-static transition 
in this sense. 

We now assume that it is possible to associate with each quasi-static transi- 
tion 3' : I -~M of  a generatised simple system M a continuous real-valued func- 
tion 14,'~ on I in such a way that: 

(A) 3'(0 is contained within a single mutual accessibility class of  M if and 
only if 

/ W[3'(tl), 3'(t2)] if 7(tl)  ~< 7(t2) 
Wv(t2) - W~(tl) = (-W[3'( t2) ,  3"(h)] otherwise 

for all t~ and t2 in / ,  where W is the adiabatic work function of  M. 
(B) I f  C is a composite of  the generalised simple systems M1, M2, • •., Mn 

and 3' : I - +  C is defined by 3'(t) = (3 '1( t ) , . . . ,  3"n(t)), where 3"i : I -~ Mi 
is a quasi-static transition of Mi (in which case 3, must be a quasi-static 
transition of C), then 

/,/ 

Wv(t ) = ~. W.ri(t ) + constant 
i=1 

(C) I f M  is a thermometer  and 7 : I  ~ M  is a C 1 curve, then 
t2 

G ( t 2 ) -  G ( t l )  = j- co{~(~)}dr 
tx 

for all tl and t2 in / ,  where co is the (C •) work form of M. 

The physical interpretation of  W v is that Wv(tz ) - W~(tl) represents the 
work done by the system in the ' t ime'  interval tl < t < t2. It is clear that the 
above conditions only determine W v to within an arbitrary additive constant. 

It  wilt be noted that the two equivalent conditions of  A are both satisfied if 
the quasi-static transition 3' is adiabatic, assuming that the reverse of  such a 
transition is also adiabatic. However, not  all quasi-static transitions satisfying 
these conditions are physically realisable adiabatic transitions of  the system M. 
For exampte, suppose M is the system mentioned in the introduction. Consider 
a quasi-static transition of  M at constant total entropy through states in which 
the volume of  each cylinder remains fixed and the substance in each cylinder 
remains at its triple point. Such a transition satisfies both  of the conditions of  
A, but it is not adiabatic, since there is no purely mechanical way of  making 
heat pass gradually from one cylinder to the other. For this reason we shall 
make no further mention of  adiabatic quasi-static transitions, using instead the 
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wider class of  quasi-static transitions mapping into single mutual accessibility 
classes. 

I f  3  ̀: I - + M  is a quasi-static transition of  a generalised simple system M, we 
define the real-valued function Q'r on I to within an arbitrary additive constant 
by the condition that 

/ W[3'(tx), 3`(t2)] if 3"(tl) ~< 3'(t2) 
QT(tl) - QT(t2) + W~(t2) - WT(h) = [-W[3"(t2),  3'(t01 otherwise 

for t~ and t2 in I. The physical significance of Q7 is that Q~(t2) - Q~(tl) repre- 
sents the heat absorbed by the system in the ' t ime'  interval t~ < t < t2. In terms 
of  Q't, assumptions A, B and C above take the alternative forms: 

(A') 3'(I) is contained within a single mutual accessibility class of  M if and 
only if Q~, is constant. 

(B') I f  7 is a quasi-static transition of  a composite of  the generalised 
simple systems Ma . . . . .  Mn given by 7(t) = (3'1(t),. •., 7n(t)), where'3,/ 
is a quasi-static transition of Mi, then 

n 

QT(t) = ~ QTi(t) + constant 
i = 1  

(C') I f M i s  a thermometer  and 7 : I ~ M i s  a C 1 curve, then 

t 2 

Q~(t2)- Q~(tO = I ~O(~/(r)}dr 
tl 

for all tl and t2 in I, where ~ is the (C =) heat form a~ + dU of  M. 

We shall now prove that, if 7 : I ~ M is any quasi-static transition of a gener- 
alised simple system M, then SM o 7, TM o 7 and Q7 are C 1 functions on I 
satisfying (6.1). 

In view of  our definition of a quasi-static transition, we may assume with- 
out loss of  generality that 7 = prl o 1", where F is a continuous map o f / i n t o  a 
single mutual accessibility class of  a composite C of  M with a thermometer  N, 
such that 3'' = pr2 o I" is a C 1 curve in N. 

First we note that  SM o 7 and TM o 3' are both C 1 functions. For 7' is of  
class C 1, and 

S M  0 "i' = - - S N  0 "~' + c o n s t a n t  (6.2) 

TM o 3  ̀= T~v o 7' (6.3) 

Next we observe that 7' is a quasi-static transition of N and I '  a quasi-static 
transition of  C, so that 

Qr( t )  = QT(t) + QT'(t) + constant 
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by B'. Since F(/) is contained within a single mutual accessibility class of C, 
we conclude from A' that Qr  is constant, whence 

Qv(t) = -Qv,( t )  + constant (6.4) 

Now, since N is a thermometer, it follows from C' that 

t~ 

Q~/(h) - Q~,'(tl) = f ~N{~/'(t)} at (6.5) 
t t  

where ~N is the heat form of  N. Combining (6.4) and (6.5), we see that Q.y 
and Q~, are C 1 functions satisfying 

dQy(t) = _ day,(t) = - ~ N { + ' ( t ) }  (6.6) 
dt dt 

But ~b~v = T~ dSN, so that 

~N{;/(t)} = TN o 7'(t) d{SN o 7'(t)} (6.7) 
dt 

(6.1) now follows from (6.6), (6.7), (6.2) and (6.3). 
We remark at this point that a continuous map 7 : I -~M for a generalised 

simple system M is a quasi-static transition if and only if the functions TM o 7 
and SM o .~ are both of  class C 1. This simple characterisation of quasi-static 
transitions is not suitable as a definition, since it involves the concepts of en- 
tropy and absolute temperature, which are derived from the postulates rather 
than assumed a priori. 

Armed with the above notion of  quasi-static transition for generalised 
simple systems, one may now use (6.1) to prove an obvious extension to gen- 
eralised compound systems of the version of Clausius' inequality for compound 
systems proved in II. 

One may also show that generalised (simple or) compound systems satisfy a 
form of Kelvin's principle analogous to postulate III' of  I: 

Kelvin's Principle 

Suppose M = IIn=l Mi, where the Mi are generatised simple systems, and let 
7 : I ~ M  be such that, for each i, 3'/= pri o 7 is a quasi-static transition of Mi 
for which QTi is a strictly increasing function. Then 3'(t2) ~ 7(h)  when tl < h .  

Proof For each i, (6.1) gives 

TMi o 3'i(t) d {SMi o 7i(t)} = dQq'i(t) > 0 
dt ~2 t 

and therefore 

d ~ d  
dt {SM 0 ~(t)) = -g (SMg 0 ~i(t)) > 0 

i=1 
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by (4.1). The result now follows, since SM is an empirical entropy for M. 
In the case of  (differentiable) simple and compound systems, it was found 

(cf. Landsberg, 1964, Dunning-Davies, 1965) that Kelvin's principle implied 
Carathrodory's principle (postulate Ill of I). This is no longer the case for 
generatised simple and compound systems. Indeed, a generalised simple system 
need not obey Carathrodory's principle at all, since it could happen that its 
entropy,SM is constant on an open subset V of  M, in which case every state in 
V would be accessible from every other state in V. We know of no experiment- 
ally observed violations of Carathrodory's principle, but, if there were any such 
(necessarily involving non-differentiable systems), then they could be accommo- 
dated within the present scheme. It will be seen that, although Carathrodory's 
principle is more economical than Kelvin's principle for differentiable systems, 
Kelvin's principle is preferable as a general statement of the second law of 
thermodynamics, since it has a wider range of validity (when quasi-static transi- 
tions have been suitably defined). 
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