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Abstract

An axiomatisation of classical thermodynamics previously proposed for a somewhat
restricted class of systems whose state spaces are differentiable manifolds is extended to
systems whose state spaces are arbitrary connected separable topological spaces. It turns
out that such systems need not obey Carathéodory’s principle, although they do obey a
form of Kelvin’s principle.

1. Introduction

In three earlier papers (Boyling, 1972, 1973a and 1973b), hereafter referred
to as I, IT and III respectively, an axiomatic formulation of classical thermo-
dynamics was presented, in which attention was confined essentially to systems
whose state spaces are differentiable manifolds.

Not all systems are of this type. For example, for a system made up of two
identical subsystems in thermal contact, each subsystem being a cylinder fitted
with a smooth piston and filled with a single chemically stable substance, the
state space is not a manifold. In the neighbourhood of a state in which the
substance in each cylinder is at its triple point, the state space is four-dimen-
sional; elsewhere it is three-dimensional. Nor is it a manifold with boundary,
since the four-dimensional part is not dense

We therefore wish to extend our previous results to systems whose state
spaces are arbitrary connected separable topological spaces. It will still be
necessary to assume the existence of thermometers (I), whose state spaces are
differentiable manifolds. But, provided there are enough of these to cover all
possible temperatures, it is possible to extend to non-differentiable systems all
the results proved in I, If and Il

The basic postulates for non-differentiable systems are listed and discussed
in Section 2. Entropy and absolute temperature are constructed for such
systems in Section 3. In Section 4, the entropy so constructed is shown to be
additive. In Section 5, it is shown that non-differentiable systems (with or
without internal adiabatic partitions) obey the principle of increase of entropy
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and its converse (I1I). A notion of quasi-static transition for such systems is
introduced in Section 6, in such a way as to give a meaning to the differential
relation g0 = T7dS, Clausius’ inequality and Kelvin’s principle. It turns out
from the postulates that, although they obey Kelvin’s principle, non-differenti-
able systems do not in general obey Carathéodory’s principle (cf. Landsberg,
1964 ; Dunning-Davies, 1965).

2. Basic Assumptions

We shall assume postulates [-V of T and assumptions (i) and (ii) of II, in so
far as they concern general thermodynamic systems and thermometers. In place
of the simple systems (Carathéodory, 1909) of I, we shall consider the wider
class of generalised simple systems M with the following properties (where, as
in I, no distinction is made between a system and the set of all its states):

(1) Givenx andy in M, then either x <y or ¥ <x (or both), where < is
the relation of (adiabatic) accessibility.

(2) Given x in M, there exist ¥ and z in M such that z <x <y (where
x <y meansy <x).

(3) M is a connected separable topological space.

(4) <isaclosed relation on M, i.e. its graph G is a closed subset of the
topological product M x M.

(5) The mutual accessibility classes of M (i.e. equivalence classes of the
equivalence relation = on M defined by x =y if and only if x <y and
y < Xx) dre connected subsets of M.

(6) The adiabatic work function (I) is a continuous real-valued function on
the subspace G of M x M.

(7) The equivalence relation ~ (equality of temperature) on states of
simple systems may be extended to states of all generalised simple
systems. Its equivalence classes will again be known as isofhermals and
those of its restriction to the states of a particular generalised simple
system as the isotherms of that system.

(8) Every isothermal contains a state of some thermometer.

(9) If M is a generalised simple system, V a thermometer, and ¥ any open
set in NV, then

{x €EM;x ~ y for some y in V}
is a (possibly empty) open subset of M.

(10) Let My, M., . . ., M, be generalised simple systems, M their product. If
the subspace

{(xla . .,xn)EM;X1~x2 ~ e an}

of M is non-empty, when we say the M; are {mutually for n > 2) com-
patible, then each connected component of this subspace represents a
generalised simple system, called a composite of the M;, for which the
relation << and the adiabatic work function are the appropriate restric-
tions of those of M.
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(11) If M is a generalised simple system, N a thermometer compatible with
M, and L CM x N a mutual accessibility class of a composite of M and
N, then the image pry(L) of L under the first projection pr; of the topo-
logical product M x NV is an open subset of M.

Comparison of the above assumptions with the postulates of I shows that
it is consistent to assume that every simple system is a generalised simple
system. Assumptions 1-6 constitute the analogue for generalised simple sys-
tems of postulate II of I for simple systems. Assumptions 7 and 8 extend the
zeroth law (postulate IV of I) to generalised simple systems. The first law has
already been assumed, in the shape of postulate I of I, which applies to arbitrary
thermodynamic systems. There is no need to extend the second law to general-
ised simple systems or their products. Indeed, Carathéodory’s principle need
not hold for such systems (cf. Section 6). For our purposes it will be sufficient
to assume the second law (postulate I or III' of I) for thermometers alone.
Assumption (i) of II (first proposed by Cooper, 1967) then ensures (cf. corollary
tolemma 1 of IT) that it holds also for all products of thermometers. The
auxiliary assumptions 9, 10 and 11 above correspond roughly to postulate V
of I for simple systems, though 10 also embraces an extension of assumption
(ii) of II. A composite of generalised simple systems M; is to be viewed physic-
ally as consisting of the M; in mutual thermal contact. Comparing 10 with
postulate V of I, we see that, if M and &V are compatible thermometers, then
they have only one composite, itself a thermometer, called their sum M + N.
An inductive argument shows that a family of #» mutually compatible thermo-
meters My, . . ., My, has just one composite 2f.; M;, which is itself a thermo-
meter. From 10, we also deduce the following lemma:

Lemma. Suppose My, . . ., M,, are generalised simple systems, [, fora=1,
..., m disjoint non-empty subsets of the set /={1, .. ., n} of the first n

positive integers, such that
m

U Iy=1

=1
Then a generalised simple system Cis a composite of the M; (i=1, ..., n)if
and only if it is a composite of systems C,, fora =1, .. ., m, where C isa

composite of the M; with i in I, (or just M; itself if I, happens to consist of
the single element 7).

Proof. By abuse of language, we write
n m
M=T1IM=T11 M,
i=1 a=1
where

Ma: H Mi

icly
and denote by pr, the natural projection of M onto M,,. We also write
N= {(xly .. -,Xn)eM;xl ~ e . ~xn}
Ne = {(x1)ic1q, EMo; x; ~ xj for i, j E1,}
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Suppose first that C' is a composite of the M;, i.e. a component of V. Then
pro(C) is a connected subset of V. Let C, be the component of NV, containing
pro{C). Then

CccC (Hca)mN

As Cis 2 maximal connected subset of V, it is also a maximal connected subset
of AL,C,) NN, i.e. Cis a composite of the Cy.

Conversely, suppose there exists for each a a composite C, of the M; with i
in I, such that C is a composite of the C,. Then C is a component of
(TIl,C,) NN. Let C' be any connected subset of NV containing C. Then pr(C N
is a connected subset of N, intersecting C,. Since C,, is a maximal connected
subset of V,, it follows that pr(C") C C,. Hence

c'c (I;ICQ) NN

As C is a maximal connected subset of (I[,Cy) N, it follows that C = C". Thus
C is a maximal connected subset of V, i.e. Cis a composite of the M;.

3. Absolute Temperature and Entropy

It was shown in I that postulate I implies the existence for every thermo-
dynamic system M of a real-valued function U (determined to within an addi-
tive constant) called the internal energy, such that

Wx, y)=Ux) - Uy)  for(x, ) ECG

where W is the adiabatic work function. If U; is the internal energy of M; for
i=1,...,n, then the internal energy U of M = IT}=y M; is given (to within an
additive constant) by

Uts - on)= 3 Ui
i=1

If M is a thermometer, then U is a C* function with no critical points. Assump-
tion 6 implies that the internal energy of a generalised simple system is con-
tinuous.

The construction of the absolute temperature scale in | enables us to associ-
ate with each thermometer M a positive-valued C* function Ty on M with no
critical points, in such a way that, if x and y are states of thermometers M and
N, then x ~ y if and only if Ty(x) = Tx(y). This temperature scale (unique to
within a positive multiplicative constant) has the (defining) property that the
heat form of each thermometer M is of the form Yy = Tay dSps, where Sprisa
C* function on M with no critical points (determined to within an additive
constant) called the entropy. The function Sy is an empirical entropy, i.e. it
satisfies the condition that Sp(x) < Spdx”) if and only if x <x'. It is also addi-
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tive, in the sense that the entropy S of the sum of the mutuaily compatible
thermometers My, . . ., M,, is given by

n
Sy, . x,) = > Si(x;) + constant (3.1)
i=1

where S; is the entropy of M;j.
The results of IT and I1I show that, if the entropy of a product of thermo-
meters M = T M; is defined by

Sy, - xn)= 3 Six2) 32)
i=1

where S; is the entropy of M;, then Sy, is an empirical entropy for M.

Assumptions 7 and 8 enable us to extend the absolute temperature scale to
generalised simple systems in an obvious way, by defining the absolute tem-
perature Ty (x) of a state x of a generalised simple system M to be Tp(y) for
any state y of any thermometer & such that x ~ y. Assumption 9 ensures that
the positive-valued function Tj; on M so defined is continuous.

The construction of the entropy of a generalised simple system is not
quite so easy. We proceed by first using assumption 11 to construct local en-
tropies for M, and then piecing these together using the known existence (im-
plied by assumptions 1-5; ¢f. Buchdahl & Greve, 1962; Cooper, 1967; Boyling,
1968) of a continuous empirical entropy o for M.

Let M be a generalised simple system, NV a thermometer compatible with
M, L C M x N a mutual accessibility class of a composite of M and V. By 11,
pry(L) is an open subset of M, and, by 8, the sets pry(L) for varying (V and) L
constitute an open covering of M. We define a local entropy Sz, for M on pri{L)
by

Sp(x)=-Sn() (33)

for any y in NV such that (x, y) € L, where Sy is the (already defined) entropy
of the thermometer V. This is a meaningful definition, i.e. the right-hand side
of (3.3) is independent of the choice of y. For suppose (x, ") € L. Then, as L
is a mutual accessibility class of a composite of M and N, we have (x, y) = (x, »")
for that composite, and hence, by 10, also for the product system M x N. It
follows by assumption (i) of Il that y =y’ for N, whence Sy(y) = Sy(¥"), since
Sy is an empirical entropy for V.

We now show that S;, is a local empirical entropy (Boyling, 1968) for M on
pry(L). Let x and x” be any two points of pry(L). Then

Sp(") ~ SL(x) = Sn(¥) — Sh(¥")
where (x, y) and (x', »") both belong to L, so that
G =GLyY) forMxN
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Ifx <x, then

&Y< y)<E,»)

and so ¥’ <y by assumption (i) of II, whence

SnG") <Sn()
and
Srx) <Spx')
Conversely, if S7.(x) <Sp(x"), then Sy(v") <Sp(¥), y' <y, and so
G )<L Y<K )

whence x <x' by assumption (i) of II.
Next we observe that Sz, must be continuous. For its range

Sropri(l)=—Sy O pra(L)

is an interval  of the real line, since L is connected and Sy (and pr,) continu-
ous. Since the preorder relation < on M is closed, the topology of the quotient
space of pr,(L) by the equivalence relation = is stronger than its order topology
under the (total) ordering induced by <. Now the function Sy, being a local
empirical entropy, passes to the quotient to define an order isomorphism Sz
of the above quotient space onto /. But an order isomorphism of totally ordered
sets becomes a homeomorphism if each set carries its order topology (see e.g.
Kowalsky, 1965, 16.2, p. 117). It follows that S, is continuous, and therefore
sois Sy
Now there exists (Boyling, 1968) a continuous empirical entropy ¢ on M,

and, since Sz, and the restriction oy, of ¢ to pr; (L} are both continuous local
empirical entropies on pry(L), it follows that Sy = f;, © oy, where f is a strictly
increasing continuous real-valued function on the interval I; = ¢ o pry (L) of
the real line.

The functions f;, for varying L have the property that, if any two of them
have a common domain of definition, then they differ by a constant (at most)
on that common domain. For suppose

[LOIL’%ﬁa 1, t2€ILmIL(

Then, if N and N’ are the thermometers corresponding to L and L', there exist
states (x3, 1) and (x,, y,) in L C M x N and states (x}, yy) and (x5, y3) in

L' C M x N’ such that
o(xy) = 0(x}) = 1y, 0(x2) = 0(x3) =t

Clearly x; = x and x, = x5 for M, (x1, ¥1) = (X2, ;) for M x N, and (x}, y1) =
(x5, ¥%) for M x N'. Therefore, for M x N x N', we have

G,y Y2) = (02, Y2, ¥2) = (x5, ¥2, ¥5) = (1 y2, Y1) = (1, Y2, YD)
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whence

0’1,)’,2)-:-()’2,}"1) fOINXN,

by assumption (i) of IL. Since N and N " are thermometers, the entropy of
N x N' (defined by 3.2) is an empirical entropy, and so

Sw(y1) + SN (3) = Sy(y2) + Sw (1)

whence

Sp(x) — Splen) = Sp/(xa) — Sp.(x2)

ie.
fo(t) — fo(t) = fr{t2) — f(2,)

Next we prove that there exists a strictly increasing continuous function f
on the open interval (M) which differs by a constant from each f7, on its
domain of definition. This we do by applying Zorn’s lemma to the set & of
all (strictly increasing) continuous functions f on subintervals I of o(M) with
the property that f and f7, differ by a constant on J N [y, for every L. Clearly &
is non-empty, since f;, € & for each L. If & is partially ordered by f< f'
if and only if f' is an extension of £, then it is clear that & satisfies all the con-
ditions of Zorn’s lemma. It therefore contains at least one maximal element f.
The domain 7 of this function f must be the whole of o(M). For suppose this is
not so. Then at least one end point of / belongs to o(M). Suppose #o =sup [ €
o(M). Then there exists at least one L such that o takes the value 4 and values
greater than 74 on pry(L). For otherwise each point x of the mutual accessibility
class ¢~ *(¢o) would have an open neighbourhood of the form pry(L) on which
o never exceeds £o. The non-empty set

x EM; o(x) < to}
would thus be both open and closed in the connected space M, and therefore

equal to the whole of M, contradicting assumption 2. Thus there exists an L
such that z, €17, sup I, > to. Similarly, there exists an L' such that z, €1y,
inf I; < t,. Since fand f;+ differ by a constant on I;' N 1, it follows that f{z)
tends to a finite limit 7 as ¢ tends #¢ from below, with [ = f(#,) if £, € 7. Defining
the function f* on the interval I* =1 U [} by

o = §i6s) forrel
PO G0 -fult)+1 forrel,

we see that

freF,  fSfE 0 FE

contradicting the maximality of . Similarly, the assumption that inf 7 € o(M)
also leads to a contradiction. We conclude that I = ¢(M). The maximal function
f clearly has all the required properties, and these determine it to within an
arbitrary additive constant.

27
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We now define (also to within an additive constant) the entropy of the
generalised simple system M to be the function Syr = f © 0. Clearly Sy differs
by a constant from each local entropy Sy, on its domain of definition pry(L).
Since fis a strictly increasing continuous function and ¢ a continuous empirical
entropy, it follows that Sy, is a continuous empirical entropy. If M happens to
be a thermometer, then this newly defined entropy coincides (to within an
additive constant) with the entropy already defined on M, as follows at once
from the additivity property (3.1) of entropy for thermometers.

4. The Additivity of Entropy

This additivity property will now be extended to generalised simple systems.
To get a concise statement of it, we first define (to within an additive constant)
by analogy with (3.2) the entropy of a product M = ITf=; M; of generalised
simple systems M; by

SM(XI, - .,Xn) = él S,-(x,-) (41)

where S; is the entropy of M; (as constructed in Section 3). Additivity of
entropy for generalised simple systems then states that, if the generalised
simple system C is a composite of the generalised simple systems M;, then the
entropy S¢ of C differs by a constant from the restriction S¢ to C of the en-
tropy Sy of the product system M.

Since C is a connected subspace of M, it will be sufficient to prove that the
function S — S¢ is locally constant. Let x = (x, . . ., X,,) be any point of C,
L; a mutual accessibility class of a composite of M; with a thermometer NV,
such that (x;, y;) € L; for some y; in N;. We prove that S¢ — S¢ is constant on
the open nelghbourhood

n
v=cnllpn)
i=1

ofx in C
Letx = (x5, .. ,xpandx” = (x5, . . ,x,,) be any two points of ¥. Choose
yiandyj in V; such that (x}, y;) and (x;, y{) are both in L;. Then

Sixi) = SixD) = i) — Si»i)
where S; and 8; are the entropies of M; and N; respectively. Summing on / gives
Sprx") — Spx") = Sn(') — Sw(¥") (4.2)

where NV i is the sum of the (clearly mutually compatible) thermometers N Ioew-
N, and y" and y" are the states of N in WthhN is in the state y; and y; respec—
tively (i =1, . . ., n). Now (xj, ¥) = (x{, yi) for some composite of M; and NV;,
and therefore also (by 10) for M; x N;. Hence

o y=E"y"  for H M; x HN
i=1
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and therefore also for some composite of the M; and the Ny, which must (by
the lemma of Section 2) be a composite of some composite of the M; with
some composite of the N;. Since x', x" € C and N is the only composite of the
N;, it follows that (x', ) =(x", »") for some composite of C and N, whence

Sclx"y = Sc(x"y = Sy — Sn (") (4.3)
by construction of S¢. Comparing (4.2) and (4.3), we see that

Sc(x"y Splxy = Sclx") — Sprx")
ie.

Sclx") = Scx") = Sclx") — S (x)

i.e. S¢ — S¢is constant on ¥, as we sought to prove.

5. The Principle of Increase of Entropy

The principle of increase of entropy and its converse are satisfied by gener-
alised simple systems by construction, since the entropy of Section 3 was seen
to be an empirical entropy. We shall now show that the same is true of general-
ised compound systems, i.e. products of generalised simple systems, in the
sense that the entropy defined by (4.1) for such a system is an empirical
entropy.

Suppose M = I1Il=; M;, where the M, are generalised simple systems, and let
x=0xy,...,xp) andx’ = (x}, ..., X)) be any two states of M. We must show
that x <x' if and only if Sp(x) < Sp(x").

Let 4 be the open covering of M by sets of the form IT}=, pry(L;), where
L; is a mutual accessibility class of a composite of M; with some thermometer
N;. Then, since M is connected, there exists a finite sequence Vo, Vi, ..., V)
of sets of ¥ such that:

xEVo, x'EVm
Vi i NVie# @ fork=1,...,m

Suppose Vi = I, Vi, where Vi = pri(Ly;) for some mutual accessibility
class Ly; of a composite of M; with a thermometer N, and choose

Ek=Crr - E) €V NV fork=1,...,m

Define £4 =X, £,,,+1=x" Then, fori=1,...,n,k=0, ..., m, there exist yz;
and y}; in Ny; such that (£4;, ¥%:) and (§x+1,4, ¥i) both belong to Ly,. Let S;
be the entropy of M;, Sy; that of Ny;. By construction of S}, we have

Siltrr1,0) — Siltwa) = Sk ) — Si(Via)
Summing on k and 7 gives

Sp(x") = Splx) = Sp) ~ Sw(y") (.0
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where

N=11Ny
ki

y=0r), ¥ =0
Also (£xi Vi) = Grvi Vi) for the system M; x Ny; for each i and I,c Therefore,
for the system M; x IIy Ny;, we have (X;, Yoi, Viis - - o» Vimi) = E1is Yoir Y 1is - - -

ymi) =... E(émivyl()ia .. '7y;12—1,§’ymi)5 (x:fayg)f? .- ~’y;m'): so that
e N=(y) forMxN (5.2)

Suppose now that x <x' for M. Then (5.2) gives
x, YN <y) <&, y) for M x N

whence ¥’ <y for NV, by assumption (i) of II. But NV is a product of thermo-

meters, and therefore its entropy, defined by (3.2), is an empirical entropy (cf.

II and IIT). Hence Sy(¥") < Sn(y), and so Sp(x) < Sp(x”), by (5.1).
Conversely, suppose that Sy;(x) <Sy(x"). Then Sp(»") <Sn(¥) and so

y' <y. Therefore, by (5.2),

(6 <ELY)<E,LY)

whence x < x' by assumption (i) of IL

6. Quasi-Static Transitions

We wish to investigate the possibility of extending to generalised simple
systems the result ¥y = Ty dSyy proved for simple systems in I. This relation
is meaningless as it stands unless M is a differentiable manifold. To get a result
which can be extended to generalised simple systems, we apply both sides of
the equation to the unit tangent vector ¥ of a C™ curve vy representing a quasi-
static transition of the simple system M. This gives

V(1) = Tag dSu(Y)
or

WD - 13y 09 % 530 0410 61)

where Q. (only defined to within an additive constant) has the property that
0,(t2) — Qy(t1) is the amount of heat absorbed by the system in the ‘time’
interval ¢, <1 <t;.

In order for this to make sense for a quasi-static transition of a generalised
simple system M, represented by a continuous map vy of an open interval I into
M, it is clearly necessary to impose some condition on vy to ensure that the
continuous function Syy O v is differentiable. We therefore admit as allowable
quasi-static transitions of a generalised simple system only those y which satisfy
the conditions of the following definition:
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Definition. A continuous map 7y of an open interval [ into M is a quasi-static
transition of the generalised simple system M if and only if / can be covered by
open subintervals J such that, for each J, there is a thermometer NV compatible
with M and a continuous map I': J = M x NV into a single mutual accessibility
class of a composite of M and N, such that pry © I' is the restriction of 7y to J
and pr, o' =v':J = Nis of class C'.

Clearly, if M is a thermometer, then any Cleurveisa quasi-static transition
in this sense.

We now assume that it is possible to associate with each quasi-static transi-
tion 7y : I > M of a generalised simple system M a continuous real-valued func-
tion W, on [ in such a way that:

(A) v(D) is contained within a single mutual accessibility class of M if and
only if

i <
Wotr) — W) = {ww(rl), )] i) <v(e)
—Wvt2), ¥(t1)] otherwise
for all £; and ¢, in I, where W is the adiabatic work function of M.

(B) If Cis a composite of the generalised simple systems M, M,, .. ., M},
and v: 7> Cis defined by ¥(t) = (v}, . . ., v,(1)), where v; : [ > M;
is a quasi-static transition of M; (in which case vy must be a quasi-static
transition of C), then

n
Wy(t) = 21 W7i(t) + constant
=
(C) If Mis a thermometer and v : I > M is a C! curve, then

Walt2) — Wo(t)) = | wli(r)}ar
%

for all ¢, and £, in 7, where w is the (C™) work form of M.

The physical interpretation of W., is that W,(f;) — W(z,) represents the
work done by the system in the ‘time’ interval #, <z < t;. It is clear that the
above conditions only determine W, to within an arbitrary additive constant.

It will be noted that the two equivalent conditions of A are both satisfied if
the quasi-static transition vy is adiabatic, assuming that the reverse of such a
transition is also adiabatic. However, not all quasi-static transitions satisfying
these conditions are physically realisable adiabatic transitions of the system M.
For example, suppose M is the system mentioned in the introduction. Consider
a quasi-static transition of M at constant total entropy through states in which
the volume of each cylinder remains fixed and the substance in each cylinder
remains at its triple point. Such a transition satisfies both of the conditions of
A, but it is not adiabatic, since there is no purely mechanical way of making
heat pass gradually from one cylinder to the other. For this reason we shall
make no further mention of adiabatic quasi-static transitions, using instead the
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wider class of quasi-static transitions mapping into single mutual accessibility
classes.

If v : I - M is a quasi-static transition of a generalised simple system M, we
define the real-valued function @, on / to within an arbitrary additive constant
by the condition that

W20, 1(22)] if v(2,) < 7(22)
— + W — W ty) =
Q'y(tl) Q’y(tz) '*/(IZ) 'y( 1) { —W['Y(tl)’ ’)’(tl)] otherwise
for ¢, and ¢, in I. The physical significance of Q. is that Q,(;) — Q,(f,) repre-
sents the heat absorbed by the system in the ‘time’ interval #; <¢ < 1,. In terms
of 0, assumptions A, B and C above take the alternative forms:

(A") ¥(I) is contained within a single mutual accessibility class of M if and
only if ., is constant.

(B') If v is a quasi-static transition of a composite of the generalised
simple systems My, . . ., My, given by ¥(2) = (71(D), . . ., ¥n(2)), where'y;
is a quasi-static transition of M;, then

0= % Oy (t) * constant
i=1

(C) 1f Mis a thermometer and v : I > Mis a C' curve, then

z,

0y(t2) — 0y = | wEim}ar

tl
for all £; and #, in I, where ¢ is the (C7) heat form w +dU of M.

We shall now prove that, if y : I - M is any quasi-static transition of a gener-
alised simple system M, then Sp; Oy, Tpy © v and Q. are C ! functions on J
satisfying (6.1).

In view of our definition of a quasi-static transition, we may assume with-
out loss of generality that y = pr; © I', where I'" is a continuous map of / into a
single mutual accessibility class of a composite C of M with a thermometer ¥,
such that 4’ = pr, 0 I'is a C* curve in V.

First we note that Sy; Oy and Ty © 7 are both C* functions. For v is of
class C, and

Sy ©y=—Sy 07 +constant (6.2)
Tyoy=TInoY (6.3)

Next we observe that v is a quasi-static transition of N and I' a quasi-static
transition of C, so that

Or(t) = 0,(t) + Q4 (?) + constant
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by B'. Since I'(J) is contained within a single mutual accessibility class of C,
we conclude from A’ that Qp is constant, whence

Q.(t) = —Q.(t) + constant (6.4)

Now, since NV is a thermometer, it follows from C' that

Zy
0y(t2) ~ Qy(t) = | Un{¥ @} ar (6.5
t

where Yy is the heat form of V. Combining (6.4) and (6.5), we see that 0.,
and @, are C* functions satisfying

d gy '
G0 0.y ey ©66)

But Yy = Ty dSy, so that

o 7
I ) = Ty 0y (y TR
(6.1) now follows from (6.6), (6.7), (6.2) and (6.3).

We remark at this point that a continuous map -y : I - M for a generalised
simple system M is a quasi-static transition if and only if the functions Ty Oy
and Sj7 © 7 are both of class C'. This simple characterisation of quasi-static
transitions is not suitable as a definition, since it involves the concepts of en-
tropy and absolute temperature, which are derived from the postulates rather
than assumed a priori.

Armed with the above notion of quasi-static transition for generalised
simple systems, one may now use (6.1) to prove an obvious extension to gen-
eralised compound systems of the version of Clausius’ inequality for compound
systems proved in IL

One may also show that generalised (simple or) compound systems satisfy a
form of Kelvin’s principle analogous to postulate I1I" of I:

(6.7)

Kelvin’s Principle

Suppose M = I17=; M;, where the M; are generalised simple systems, and let
7v: 1= M be such that, for each i, v; = pr; O 7 is a quasi-static transition of M;
for which Q. is a strictly increasing function. Then ¥(#,) £ y(t)) when 1, <.

Proof. For each i, (6.1) gives

d dQ.,;
Tag; © vi(t) I 8w 0D} = —QL‘;L(L) >0

and therefore

d nod
7 Suov@®}= g} o Su; 070y >0
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by (4.1). The result now follows, since S;4 is an empirical entropy for M.

In the case of (differentiable) simple and compound systems, it was found
(cf. Landsberg, 1964, Dunning-Davies, 1965) that Kelvin’s principle implied
Carathéodory’s principle (postulate III of I). This is no longer the case for
generalised simple and compound systems. Indeed, a generalised simple system
need not obey Carathéodory’s principle at all, since it could happen that its
entropy Sy is constant on an open subset ¥ of M, in which case every state in
V would be accessible from every other state in V. We know of no experiment-
ally observed violations of Carathéodory’s principle, but, if there were any such
(necessarily involving non-differentiable systems), then they could be accommo-
dated within the present scheme. It will be seen that, although Carathéodory’s
principle is more economical than Kelvin’s principle for differentiable systems,
Kelvin’s principle is preferable as a general statement of the second law of
thermodynamics, since it has a wider range of validity (when quasi-static transi-
tions have been suitably defined).
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